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ABSTRACT

A variant of the simplex method is given for solving linear
programs with M + L equations, L of which have the property that
each variable has at most one nonzero coefficient, Special cases include
transportatio.. problems, programs with upper bounded variables,
assignment and weighted distribution problems, The algorithm described
uses a working basis nf M rows for pivoting,pricing, and inversion
which for large L can result in a substantial reduction of computation,
This working basis is only M x M and is a further reduction uf the size
found in an esrlier version, see [1]. Unfortunately, to achieve this

reduction, rov as well as column transformations must now be made,
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GENERALIZED UPPER BOUNDING TECHNIQUES - II

by G. B, Dantzig and R. M, Van Slyke

l, Introduction

As in [1) we assume that we are concerned with a linear program
in which each variable has at mcst one non-zero coefficient in which
is the last L equations to be nonnegative and the corresponding last
L constent terms are positive, In section IV we indicate the necessary
modifications to handle negative coefficients in those equations., By
normalizing the variables and multiplying the equations by constants, we
can assume without loss of generality that all nonzero coefficients and

constants in the last L equations are ones, (1).
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We reviev here for completeness some necessary definitions and theorems

ve will borrow from [1].

e £ set of varisbles or columns, S, » Will refer (depending

on context) to those variables or columns corresponding to the columns
th
of coefficients in (1) with 1 as their M + / component, 8, , the

th
O set, is the set corresponding to columns with zeros for the

st th
M+l through M + L coefficients.

We assume that the system (1) is of full rank and derote by

9 IneL o

(A~,...,A "], a basis for the system. We always assume A~ = A
the coefficient of the variable to be optimized., The underscoring is
to differentiate coefficient vectors with all M + L components from
the reduced vectors of the first M coefficients which .ill be
denoted without the underscoring. There will be no underscoring for

individual components Ai

even though they differ in the number of their components.

of these two different types of vectors

Theorem 1) At least one variable from each set Sl (vith the possible
exception of S, ) 1s basic,

Theorem 2) The number of sets containing two or more basic variables is

at most M .

The sets containing two or more basic variables plus So are called
essential sets (the term here is used in a slightly different sense
than in [1]). An essential set for one basis may become an unessential
one in the next.

In the next section we outline the method, in the following we
formalize it as an algoritim, In the last section we indicate the modifi-
cations required to handle negative coefficients in the last L equations

and finally in the appendix the method is carried out on an example.
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II. The Method

Given a feasible basisl, we assume we have selected for each Sz

k
cue basic variable J& to be the key variable, A L is said to be the
£
key column. For So the key column can be taken for convenience to

be a dummy column with all zero components., We then consider the

system obtained by subtracting the key columns from every other column

in their respective sets (in (2) we assume for simplicity that the key
variable was the first one in each set). In this modified system the
value of the key variables must clearly be one. We treat these varinbles
as we would variables at upper bound in an upper bounded variables
algorithm for the simplex method and subtract their coefficients from the

right hand side.

y "'y y y "‘y LIRS e e o n
(2) o Dy n0+1 no+2 n, nL_l+l L
n n+l n 42 n 41 n n+ln _+1 n n _+41] -
A0 AQ A0 A0 A0 ALl a0 gLl AL aLl Ly
1 0 e 0. =]
1 0 -i

We then introduce the following notation if AJ €8 1 ve let

k k
l)‘-A‘z
3y Xy
D’ =AY - A J K,
k k
(3) d=b - in‘-b-z Al
i=0

1 Obtaining a first feasible solution is accomplished using this method
wvith a phase I set up as in the usual simplex method.

k-




vhere the last L componeats of d are zero.
We assume that D’ for J =k, (key) to be absent from the

system. The working basis, B , is given by B = [DJ IA'j is basic and

not key}. By virtue of theorem 1 it is clear that B has exactly
M columns, We assume B]' = AO corresponds to the coefficient of

the variable to be optimized. We define the derived system to be

(&) }JyJDJ =d and it is easy to prove:
Theorem 3 B is a basis for (4).
Proof: Suppose Z)\JBJ =0 . Since B’ differs from g" (the

same column considered in the system depicted in (2)) by omly O

components z )\JEJ = 0. But this implies that the §J

J

plus the
key columns are linearly dependent since the by themselves are
linearly dependent. On the other hand this set is obtained from a
(nonsingular) basis by subtraction of columns from within the set
which does not reduce the rank, yielding a contradiction.

By Theorem 2 there exist at most M sets with more than one

basic variable, These sets and S. are the only sets which contain

0o

members of B ; i.e., they are the essential (including SO) sets.
Thus, with each feasitle basis for the original system (1), we

have associated a set of L key variables (and one dummy) and a

basis for the derived system. We now show that we can carry out the




steps of the simplex method using Jjust the inverse B'l of B, the
reduced basis, and the corresponding basic solution, d , of thLe
derived system (4).

The first step is to obtain a set of prices for (1). Let
us denote by T = ("1 e ’"M) the prices on the first M equations
and pu = (ul,...,u.L) the prices on the last L , These prices are

determined uniquely by the condition that
0 J
(, WA = (r, PAT =1

J
(" » u)ﬁ 1.0 1&,0..,*1‘

A -
let m= (B l)l , the first row of the inverse of the working basis
B8, It has the property that
0
RE = FA =1

%BJ = 0 J-e,.oo’“

i.e., T is a set of prices for (4). To extend 7 to & set of

prices for (2) is %rivial we simply set

= a5
(5) o= - A Jul,...,L,
Ji
Now consider for basic columns A
A ~ Ji A A k[ Ji
(m ’ U)A = (7": U-)A_ =0 1f A is key (5)

or
4

G,0AL=@, ) + &) for some k
= (@, 0B + (@, QA

k)
=0+0 if Al 1a not key .

Thus (% , {I) 1s & set of prices for the original system (1).
-6-




Using these prices we can "price out" the columns of (1) to find
one to enter into the basis, Using the usual simplex criteriorn, the
incoming column As would be chosen by

8 J
O = (m , WA amin (r, p)A* =min A

vhere
b, = Z‘II’AJ+p for Ad € g
- N | )/ s °

If As > 0 , we have an optimal basic feasible solution and we're
=

done; otherwise we bring l_\s into the basis, Assume A° ¢ So .

To do this, we must express ﬁs and b in terms of the current

basis for gll If we let

k

D% uBlp® asl(a® -9

then
k
(6) (A* - 29 iB:Bi - ZE :(A“1 - Avi)
i=1

vhere 1, indicates the column number in (2) corresponding to the
ith column of the working basis and v, denotes the column number
of the corresponding key variable,

We denote the representation of A8 in terms of the current

basis by K: , that is:

M+L .
8 - 8,Y1
a A A
IR
i=1

Fran (6) we see



if A g = A = for some t
(7) K] PR
— 8 i t

- D v if A" =A for some t

The current values for the variabvles in the basis b, are given

i
either by updating the values of the previous iteration in the usual way

or recomputed in a similar way to A 8 above, That is

J
Let E’- ai,...,ah be given by
k
(8) T e ptm - Z A ‘) - By

then
(- ) A %-Z .Y q Wt oat)

and as in (7) the b

4 are given by

1l - dt if A is key
Ve™y J

T
(9) , =< q, 1f ALl aa® for some t

o

0 otherwise

.

Finding the variable to leave the basis is accomplished in

exactly the same way as in the ordinary simplex method, Let

_8-
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a B 5;
(10) 0= —r = min - ) i-l,ooo,M+Lo
A - i -
r A;>0 i
- J
vwhere we of course require that A " >0. Let us assume AT ¢s .
P

Three cascs can occur in the updating process:

J
(a) If 8  1s not essential and A Te S5 ; 1.e., the outgoing
variable is the key variable in S0 then B remains unchanged,
and A° simply replaces A T @as the key variable in So .

This requires the updating of d which is accomplished as

follows:
- k, k. 1/
d:-Bl<b- ZA‘-A"”H-A“)
Lro
. k k d
-Bl<b- ZA[-AO >-B'1(A’-Ar)
o J
o B A% oaT)
“a-p°
3 K

Observing that AT = A ° , this 18 easy to compute since we

already have d and the second term vas generated in determining the

- 8
A 4"
4

(b) If AT 1s not a key variable, then we update gt simply by
J k

=8
pivoting on the column D on the row wvhich A P a kP occupies

1/ Where the symbol ": = " does not indicate equality but rather
that the expression on the right replaces or (updates) the
variable on the left,



in the working basis. In symbols B . : = PB vhere P is
the matrix which performs the pivot, d is updated by applying

this pivot to the old E..

J
(c) It AT ¢ 5 is a key variable in a different set than the one

containing A8 € So , we must first change the key variable in

Sp . To change the inverse of thejpseudo basis B , ve consider all
columns of B of the form A’ - AT there must be at least one
such since after A° enters the basis Sp must contain a

basic variable (Theorem 1). One of these columns, call it A :

is to become the key variable, To get the new pseudo-basis B

from the old one B we wish to multiply the column (in B )

k Jr Jr k
A - A by -1 toobtain A" - A" and we wish to subtract
J J
Ag -AT from every other column of the form Aq -AT for
k
J # k to obtain AJ - A . That is
B: =BT where T 1s of the form
1
(12) B
T- 0-.00-1-00-1 -l "l.o- -l 0..-0
i
) ) l—i
Where the -1's occur in the columns corresponding to AJ € Sp y and
the row corresponds to the new key variabie, AF .
P s

-1
and it is easily verified that T =T

-10-
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J
since applying the process twice replaces A 4 as the key variable,

The values for d are updated by applying T-l . Now with the new

key variable in 8p ve simply apply the process outlined in b ,
With our updated B , y and key variables we are now ready to
make another iteration, If the inverse of the pseudo-basis is expressed

in product form we have

where each T' 1is either of the form (12) or (13), the latter

th
resulting from a pivot on the r element of the column (al”"’ah)T .

l. -orl/o:r —
) 1 -ar-l/ar
(13) P = /o
. 1.
-a_/a A
] 1
O p—

As W, Orchard-Hays has remarked to one of the authors we can if we

wigh express each transformation of the form (12) as a sequence of

transformation of the form (13). Suppose we wish to express a matrix T

in terms of transformations of the form (13), where -l1's appear in

columns h_, hl,...,h1 and suppose that the -1 in column ho
lies on the diagonal; in other words, all the -1's are in the

h. row, Let P(r,s) denote the pivot matrix (13) with aJ 20

-11-



J ¢ r, or g,a} =1 and aB = -1 , When multiplying on the left
this matrix has the effect of subtracting the rth rowv from the
sth 1row, Finally let P(r,r) be the matrix with all plus ones on
the diagonal except in the rth diagonal element which is -1 ,
Every other element i1s zero. When multiplying on the right,

this has the effect of multiplying the rth column by -1 ., It

is then easy to see that

T = P(ho, hk)P(ho, %_l)...P(h ,nl)P(h 3 ho)

-12-
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FLOW DIAGRAM OF THE GENERALIZED UPPER-BOUND ALGORITHM

(1) ENTER

Erter with inverse of workins- ovasis

B ™, vasic solution, d . . Lue

derived system (4) and a se. of L

kKey ariavles,

i o |
(@ ! {2) =
| Price out columus using (3’1)l . (o “; 2V i?(rminatc curreri
- . e e solutior 1is
i Min o = o, <V optimal.
(4) _er%
Find Bs, A° , aad é , &2 use
1ow criteria vo ind Adr the
b_va_rigql_e to ve dropped, |
Atre S
C
() AY oot ke, ALY ey
Pivot on D° in the row i
‘ corresponding; to U ' in (0) < (/) ‘L o =0
l B8 and update d . Mac: somc oasic column M ¢ .As s, 1S, ca
| in set SL otner than of A'Y ang upda o
N AT e, Update B, d . ;
Retura to (1) for next Lana S i

iteration,

L I

L?o vo (9) _J Return to 1) for AL“4
iteration, |

FIGURE 1
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III. Description of Algorithm

Referring to figure 1, the algorithm takes place in the following

steps:

(1)

(2)

(3)
(&)

(5)

We assume we enter the algorithm with the inverse B of the
working basis, the value d of the appropriate basic solution
of the derived system (4) and the set of key variables, To get
this initial solution, the usual phase I procedure can be
carried out in the obvious way.

Let m = (B-l)i for 1 =1,...,M and for each set Sl(t % 0)

M
kl kl
let p, = - E:ﬂiAi , Where A is the key column in S‘ ;
i=1
Let
M.
A, = ﬂ'AJ +p, for AJ € 8, .
J 11 J/ L
ial

8
- +
Let AB min A, and suppose A ¢ So s B A’ 2 0, we go

J
to Step (3); otherwise skip to (i),

Terminate we have an optimal solution,

k 8
-1 8 = =
Find D = B D =B l(A' - A O) , A by means of Equation

(7) and E: by means of Equation (9). Use the usual simplex

decision rule Equation (10) to find the variable to be dropped

J
AT and suppose A Te Vg Ir AT s key, go to step (5);

if not and p ¢ 0, go to (6); if p =0, go to step (7).

8
We pivot with respect to D in the rov corresponding to D r

in B~ and update a by applying the pivot transform to it,
We then return to step (1) for another iteration,

-1k-



(6) Meke some basic column say Ak , & # Jr in set S key

3 (]
instead of AT . Update B~ by applying & column trans-
formation of the form (12) and update gt by pl . o7l

d is updated by d : = T-lai. We then can go to step (5).

J i
(7) Make A° key instead of A ® and update d Ly
diad-D".

Return to step (1).

IV, Negative Coefficients:

When negative coefficients appear in the last M + L equations,
the algorithm is changed in a quite obvious way, We can assume without
loss of generality that the coefficients in the last L equations are
41 or -1 and the last L right hand side ccmponents are +l1,
Theorems 1, 2, and 3 still hold, and we can require that each key
column have a +1 1in the last L equations since clearly each set
must have such a column which is basic, In the pricing process 1if
the column A'j to be priced has a negative coefficient in the last
L components, the appropriate  1s subtracted rather than added

to ﬂAJ . To form the difference columns DJ

the key column is
added to columns with a - 1 rather than subtracted and appropriate
modifications in equations (7) and (9) must be made to reflect this,
Other than these slight modifications, the algorithm proceeds exactly

as before,

-15-



Example: Consider the following example (Figure 2) with M= 3,

We seek to maximize xo .

S S S S S
0 - 2™ | 1 ™
A G A Y (R S A
1l 0 2 0 3 L 5 i -1 -12 15
1 1l -1 0 2 Ik L 2 -3 6 T
0] 0 0 1 0 0 0 0 0 0 0
1 1 1 i
1 1
1 1l
1 I 1
b 1 4
=7 1: 1
b =(3 5 5 0 1 1 )
X X X X X
Figure 2

which has an inverse:

The initial basis is AOAlAeABAh 5,68

I o I+ ro|r-'I

2
2 0]
-2 -1
0
i L
e 2
A1
L
e

-16-
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1

The working basis B = {Ap -0, A -4A ,A

1.4568

and A A A’A’A"  are key.

5

- A;] ; hence

PR



With the aid of (5) we find the prices [m, ] =[%, 4, 4 ; -4,

2> SY |
2’ "2’ 2’2]‘
We then price out and find A7 € Sh wins,
= -4
=7 =6 -1..7 6 bor ol
A'-a” =B A -A)= [ & 4 4[] -2
0O 0 1 0
-3
= |4 |,
0
7 6 0 2 )
i.e., A -A =-30 - %A -4)
or T RV U\

T

giving a representation of A in terms of the full basis.

- T
‘-\7 = ('5) %) '%) o 0, i, 0)

We obtain the values of the variables by considering

B [ 3

K
B[y - ZA By gt | 2] - 5
0 o

This means

or

hence

- [}; %) %: 0, 1, 1,1, l]T .

ol

LI7=



We now determine the variable going out of the basis by

@ = min é

K} 0

and r could be 2 or 7 ., Taking it to be 7 , we see that since the

H?lrl 2
el Vi
]

'—J

set Sh is inessentiel and © =1 we just replace A6 by A7 as

a key variable and B remains unchanged, The new multipliers are

- i 1 1 1
[W,U.]' 5:5;55'51'31'%)'312]
and this time A? € S5 prices out optimally,
EREINES
-1 8
B[A9-A]. ¢ 4 4 9
| 0 0 1] L O |
G
= -5 5
. 0 ]
that is, ﬂ? = -é? + 5&} = Sﬂ? + é? and
&9-[-1’ %, =5, 0, 0, 0,1, o) .
L ok |EE] [
Bi2- )ATl= 4 4 4 4
| 0 0 1 0
6
- 1
0

18+



1 N : 8
b = 6A9 + A2 S Al +A +A + A5 + A{ + A

- 6A0 + A2 + Ah + A5 + A7 + A8

b #6090 1,0, 1,1,1, 1]

5 13
esmnbina-g-rae
oo 59 72@ 6’
V50 2 j =1

i
therefore, we want to drop A which however is key, So first

)

1 2
we rmust replace A by A as a key variable, To do this we take

our current working basis

B=[A°-0,A2-A1,A5-Al]

and postmultiply it by

1 0 O

T = 0 -1 -1

0 0 1

==

which has the effect of subtracting the second column from the third

and reversing the sign of the second column,

0
B'=Br= [A -0,A -A , A -A]

-1 -1 -1
(B') -TlB
where
s 0 0
-1
T = 0 -1 -1 .
0 0 1

Hence X

-19-
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l"oo" PO S
(B') " = -1 -1 t 4 4
0o 0 1 O 0 1
IRE
JERE
0 0] 1
L -

We then pivot in the vector column

bk by
(B')-l(A9-A8) " -i— lK -% 9

Lo o 1] o

- -

) p

- 0_

on the second component,

This gives us a new inverse basis

pt - pp L

—l‘];o" - L 1L 1A
5 2 2 2
1 2 L 2
Iy C o Loy
0 0 1 1
5 ¥ AN J
9 1 17
[
20 20 20
L 1 3

* 120 20 20
0O 0 1

b J

-20-




The new prices are

(2 1 7 . 1. v »n L
20*' 20’ 2% 20’ 20’ 20’ 20

and upon pricing out we find that all columns price out nonnegatively

and the optimal solution is given by

9 W 7] P5“1
K 20 20 20
B i - ZAzlz %0- é—o bR 6
| O 0 1 ] LO ]
Fa
= 0
L® .
and
b-A2-Ah-A5-A7-A8=6AO
or R

b=[6,1,0,1,1,1,1, 0]

the values of the basic variables, Another way to compute 13 is, of

course, by ; = g - OZ 9 , the usual formula for updating the values

of the basic variables is the simplex method.
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